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Abstract. A theorem is formulated for constructing quasienergy states for the problem of a
Bloch electron in a constant electric field. It is shown that time-dependent solutions of the
problem can also be made to be eigenstates of the commuting electric and time translations.
The latter define the period of the quasienergy states. The Wannier–Stark ladders and the Bloch
oscillations are considered in the framework of the quasienergy states.

Conventionally, quasienergy states can appear when the Hamiltonian is a periodic function
of time. One can then construct solutions of the time-dependent Schrödinger equation which
are also eigenstates of translations in time by the periodT of the problem. By definition these
are the quasienergy states [1]. In this context the quasienergy states were recently considered
for the problem of a Bloch electron in a periodic-in-time electric field [2–6]. It is instructive
to compare quasienergy states with Bloch states in a periodic-in-space potential. While the
former are solutions of the time-dependent Schrödinger equation which are also eigenstates
of finite translations in time, the latter are eigenstates of both the Bloch Hamiltonian and
the finite translations in space. Correspondingly, the eigenvalues of the finite translations in
time are the quasienergies [1] and the eigenvalues of the finite translations in space are the
quasimomenta [7]. There is also an analogy between these two problems in another aspect.
As is well known, one can define Bloch states when the periodic potential is zero. These
are the free electron states with a conserved momentum. For them the lattice constant and
the quasimomentum Brillouin zone are completely arbitrary. The analogous problem for
quasienergy states is the time-independent Hamiltonian with its corresponding stationary
states. For the latter the energy is conserved while the time period and the quasienergy
Brillouin zone are completely arbitrary.

The problem of a Bloch electron in a constant electric field has a long history [7]
and has also been of much recent interest. There are, in general, two aspects to this
problem which are not independent. One of them is the stationary approach which has to
do with the Wannier–Stark ladders [8]. These ladders were a subject of controversy [9] and
theoretically the calculations of their life times seems to remain a challenging problem [10].
On an experimental level, important progress was made when these ladders were observed in
superlattices [11, 12]. The other aspect of the constant electric field problem has to do with
Bloch oscillations which were already considered in the very early stages of the quantum
theory of solids [7]. These oscillations are closely connected to the Wannier–Stark ladders
and there are a number of recent publications where they were observed [13–17]. For both
aspects of the problem of a Bloch electron in a constant electric field experiment seems to
be ahead of the theory. Thus there are no clear theoretical guidelines for the conditions
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under which the Wannier–Stark ladders and the Bloch oscillations should be observable
experimentally.

In this paper the problem of a Bloch electron in a constant electric field is considered
in the framework of quasienergy states. As mentioned above, the trivial solution would
be just to consider the stationary states. However our interest will be in constructing
time-dependent solutions which are non-trivial quasienergy states and which are closely
related to the Bloch oscillations. For this purpose use is made of the electric translations
[18] which are time-dependent operators. In a way similar to the procedure of [5] for a
time-dependent electric field, we shall look for quasienergy states for the time-independent
Hamiltonian. A general theorem which connects the stationary states of the problem in the
kq representation with the time-dependent solutions in thex representation [19] is used.
In the one-band approximation the latter states turn out to be the quasienergy solutions for
the Bloch oscillations. The quasienergies themselves are calculated including the geometric
phase for the corresponding energy band [20].

The time-dependent Schrödinger equation in one dimension for the Bloch electron in a
constant electric fieldE is

ih̄
∂ψ(x, t)

∂t
=

[
p2

2m
+ V (x) + eEx

]
ψ(x, t) (1)

whereV (x) is the periodic potential andV (x +a) = V (x) with a being the lattice constant.
It is convenient to rewrite equation (1) in the form [5](

ih̄
∂

∂t
− H

)
ψ(x, t) ≡ Sψ(x, t) = 0 (2)

whereH is the Hamiltonian of equation (1) and, by definition,S is the operator

S = ih̄
∂

∂t
− H. (3)

Since the Hamiltonian is time independent there is no special time period for which one can
define non-trivial (not stationary) quasienergy states, and any translation in time commutes
with S. However, we shall be interested in time-dependent solutions of (1) or (2) which
are also eigenstates of the electric translations [18]

β(a) = exp

(
i

h̄
pa + i

h̄
eEat

)
. (4)

Such eigenstates will be denoted byψkE
(x, t), wherekE is the electric quasi-momentum.

We have

β(a)ψkE
(x, t) = exp

(
ikEa

)
ψkE

(x, t). (5)

Now ψkE
(x, t) can no longer be chosen as a stationary solution of the Schrödinger equation

(equation (1)) despite the fact that the Hamiltonian of this equation is time independent. One
can, however, still chooseψkE

(x, t) to be a quasienergy state corresponding to a translation
in time α(T ) that commutes with the electric translation in equation (4). Such a translation
α(T ) is

α(T ) = exp

(
∂

∂t
T

)
(6)

where the periodT is given by [21]

T = 2πh̄

eEa
. (7)
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It is easy to check thatα(T ) commutes withβ(a). Having constructed commutingα(T )

andβ(a) translations one can chooseψkE
(x, t) in (5) to be an eigenfunction ofα(T )

α(T )ψζkE
(x, t) = exp

(
i

h̄
ζT

)
ψζkE

(x, t). (8)

This eigenfunction is a quasienergy state of the Bloch electron in a constant electric field.
It is denoted byψζkE

(x, t) with ζ being the quasienergy.
We are now going to use a theorem that was formulated in [19] for constructing

quasienergy states for a Bloch electron in a constant electric field. For this we write
down the eigenvalue Schrödinger equation for the problem in thekq representation [19][

− h̄2

2m

∂

∂q2
+ V (q) + eE

(
i
∂

∂k
+ q

)]
Cε(k, q) = εCε(k, q) (9)

whereC(k, q) is thekq wave function which is related to the wave functionψ(x) in thex

representation as follows

C(k, q) =
√

a

2π

∑
n

exp(ikna)ψ(q − na). (10)

According to the theorem of [19], given an eigenfunctionCε(k, q) of (9), a time-dependent
solution of (1) is

ψ(x, t) = exp

(
− i

h̄
εt

)
Cε

(
k − 1

h̄
eEt, x

)
. (11)

This is an exact result. It is interesting to check whether this is actually a quasienergy state
for the Bloch electron in a constant electric field as defined by (1), (5) and (8). For this we
just have to denoteψ(x, t) in (11) (we replaceε by ζ andk by kE) by

ψζkE
(x, t) = exp

(
− i

h̄
ζ t

)
Cζ

(
kE − 1

h̄
eEt, x

)
(12)

and check that the latter function satisfies all three of equations (1), (5) and (8). In checking
this we keep in mind that theC(k, q) function satisfies the following boundary conditions
[19]

C(k, q) = C

(
k + 2π

a
, q

)
= exp(−ika)C(k, q + a). (13)

In view of the transformation in (10) from thex to thekq wave function the result in (12)
can also be given the following form in thex representation: letψζ (x) be the eigenfunction
of the time-independent Schrödinger equation in thex representation(

p2

2m
+ V (x) + eEx

)
ψζ (x) = ζψζ (x). (14)

Then according to (10) and (12), the time-dependent quasienergy stateψζkE
(x, t) can be

written in the following way

ψζkE
(x, t) =

√
a

2π
exp

(
− i

h̄
ζ t

) ∑
n

ei(kE− 1
h̄
eEt)naψζ (x − na). (15)

One can check that the time-dependent functionψζkE
(x, t) satisfies (1) ifψζ (x) is a solution

of (14). This completes the formulation of the theorem for constructing quasienergy states
for the problem of a Bloch electron in a constant electric field. Apart from the exponential
factor exp(−(i/h̄)ζ t), (15) is a relation between a Wannier functionψζ (x) and a Bloch
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function with a time-dependent quasimomentumkE − (i/h̄)eEt . Clearly, for this relation to
have a physical meaning the sum in (15) has to converge, or in other wordsψζ (x) has to be
sufficiently well localized. As is well known [22] the spectrum of (14) is continuous, and
it therefore has no localized eigenstates. This means that the problem of a Bloch electron
in a constant electric field has no exact Bloch-like quasienergy states as given by (15).

One can, however, turn to approximate solutions of (14) which have the meaning of
resonances. In particular one can consider one-band solutions of (14) [or of the time-
dependent equation (1)] which are sufficiently localized, so that the sum in (15) converges.
In what follows we are going to consider these one-band solutions, but we refer the reader
to [9] and [10] in order to draw attention to the difficulties that are connected with them.

We again turn to (9) in thekq representation. In the one-band approximation one can
look for a solution of this equation in the form (we don’t write the band index)

Cε(k, q) = Bε(k)ψk(q) (16)

whereψk(q) is the Bloch function of the band, andBε(k) an unknown function. For the
function Bε(k), (9) becomes [19][

ieE
∂

∂k
+ ε(k) + eEX(k)

]
Bε(k) = εBε(k) (17)

where

X(k) = 2π

a
i
∫

u∗
k(q)

∂

∂k
uk(q) dq (18)

with uk(q) being the periodic part of the Bloch function. The integration in (18) is over
a unit cell of the Bravais lattice. The solutions of (17) are well known and they form the
Wannier–Stark ladder [8, 19]

Bεν
(k) = exp

(
i

eE

∫ k

0

[
ε(k′) + eEX(k′) − εν

]
dk′

)
(19)

εν = eEaν + 〈ε(k)〉 + eE〈X(k)〉 (20)

where the indexν runs over all integers and where the angle brackets define an average
over the Brillouin zone of a functionf (k)

〈f (k)〉 = a

2π

∫ 2π/a

0
f (k) dk (21)

In the kq representation the eigenfunctionCεν
(k, q) will be given by (16) with theB

function from (19). SinceBεν
(k) in (19) is just a periodic ink phase, the eigenfunction

Cεν
(k, q) in (16) is nothing else but a Wannier function in thekq representation for the

energy band under consideration (a Bloch function in thex representation is a Wannier
function in thekq representation [19]). The phase of the Bloch function can always be
chosen in such a way as to makeX(k) in (18) be [20]

X(k) = 〈X(k)〉. (22)

In what follows this choice of phase for the Bloch function will be assumed.
For constructing quasienergy states we shall be interested only in theν = 0 eigenvalues

and eigenfunctions of the Wannier–Stark ladder (the reason for this will become clear below).
With this in mind and using (22) we have from (16), (19) and (20)

Cε0(k, q) = exp

(
i

eE

∫ k

0

[
ε(k′) + eE〈X(k)〉 − ε0

]
dk′

)
ψk(q) (23)

ε0 = 〈ε(k)〉 + eE〈X(k)〉. (24)



Quasienergy states for a Bloch electron in a constant electric field8299

We now use the theorem of [19] (equations (11), (12) and (15)) for constructing a
quasienergy state of the Schrödinger equation (1). We have by using (12), (23) and (24)

ψζ0
kE(x, t) = exp

(
− i

h̄
ζ0t + i

eE

∫ kE− 1
h̄
eEt

0

[
ε(k′) + eE〈X(k)〉 − ε0

]
dk′

)
ψkE− 1

h̄
eEt (25)

ζ0 = ε0 = 〈ε(k)〉 + eE〈X(k)〉. (26)

This is a quasienergy state of (1) in the one-band approximation. It is easy to check that the
state in (25) is also an eigenfunction of the commuting operators in (5) and (8). By definition
of quasienergy states [1] the quasienergyζ0 is defined up to the additive constantνh̄(2π/T ),
whereν is any integer andT is given in (7). We therefore have for the quasienergyζν (the
subscript 0 is replaced byν)

ζν = 〈ε(k)〉 + eE〈X(k)〉 + νeEa (27)

with ν being an arbitrary integer. The expression for the quasienergyζν coincides with the
Wannier–Stark ladderεν in (20). The physical meaning ofζν is, however, different from that
of εν . While εν is an eigenvalue of the one-band approximation eigenvalue equation for a
Bloch electron in a constant electric field (equation (17)),ζν is the quasienergy for the same
problem in the same approximation. As is well known [1], in a quasienergy state the energy
is conserved up to ¯h(2π/T ) whereT is given by (7). In other words, the conservation is for
the quasienergy with the Brillouin zone extending from 0 to ¯h(2π/T ). We come here to the
very interesting conclusion that the Wannier–Stark ladder levels are also the quasienergies
of the same problem. This is a new interpretation of the Wannier–Stark ladders. As for the
quasienergy states (equation (25)), they are closely related to the Houston function [23]

ψ(x, t) = exp

{
− i

h̄

∫ t

0
ε

(
k − 1

h̄
eEt ′

)
dt ′

}
ψk− 1

h̄
eEt (x) (28)

The latter, as was shown in [5], is also a quasienergy state. By the substitutionk′ =
k − (1/h̄)eEt ′ (and replacingkE by k) it can be shown that the function in (25) goes over
into the one in (28) (up to a constant). The quasienergyζ0 [22] (see equation (26)) contains
the geometric phase〈X(k)〉 [20, 24] which is defined moduloa (the period of the crystal).
When the crystal has inversion symmetry〈X(k)〉 can be either zero ora/2, otherwise it
can assume any value between zero anda. The theoretical prediction of Bloch oscillations
[7, 13–17] is largely based on the solution in (28). Having shown that the latter function is
essentially the quasienergy state in (25) we arrive at a new view of the Bloch oscillations:
we can consider them as being related to quasienergy states of the problem. As was pointed
out in [1] a system in a quasienergy state has a variable dipole moment and it can radiate.
One can therefore consider the Bloch oscillations as coming from the quasienergy states
(equation (25)) for a Bloch electron in a constant electric field.

In conclusion we have shown that quasienergy states and quasienergies can be defined
for a Bloch electron in a time-independent electric field. Our definition is outside the
common framework for the concept of quasienergies where the electric field is a periodic
function of time [1–7]. The reason for being able to define quasienergy state (equation (8))
for a constant electric field is that we require them also to be eigenstates of the electric
time-dependent translations (equation (4)). It is instructive to consider the same problem in
the ‘velocity gauge’. To this end, I introduce the vector potentialA(t) = −cEt . Setting
φ̃(x, t) = φ(x, t) exp(i(e/h̄c)A(t)x), equation (1) becomes

ih̄
∂φ̃(x, t)

∂t
=

(
1

2m

(
p + e

c
A(t)

)2

+ V (x)

)
φ̃(x, t). (29)
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Then, substituting̃φ(x, t) = u(x, t)eikx , one has

ih̄
∂u(x, t)

∂t
=

(
1

2m

(
p + h̄k + e

c
A(t)

)2

+ V (x)

)
u(x, t). (30)

Sincek has to be taken modulo 2π/a, the Hamiltonian on the r.h.s. is actually periodic in
time with the Bloch periodTBloch = 2πh̄/(eEa). It then becomes immediately obvious why
quasienergy states with that period have to play a special role. (The one-band approximation
readily yields an explicit example.)

It is clear that these considerations are equivalent to the use of commuting electric
and time translations. We have concluded that the quasienergy states for the one-
band approximation are identical to the well known Houston states. In order to reach
this conclusion we could have used the results in [5] directly without entering into the
calculations of this paper. However, the insight gained by our theorem and calculations in
equations (9)–(15) leads one to a more general framework for quasienergy states. Thus,
according to this theorem, any solution of (14) (not just one-band solutions) leads to a
quasienergy state as given by (15). For example we could have considered a two-band
solution of (14) or any other localized solution of this equation, and from our theorem one
obtains the quasienergy states as given by (15).

Finally, we would like to make the following remark about the result in (15) when
considered for the quasienergyζ0 (see equation (25)). For simplicity we set the electric
quasimomentumkE = 0. We then have

φζ00(x, t) =
√

a

2π
exp

(
− i

h̄
ζ0t

) ∑
n

exp

(
i

h̄
eEnat

)
φζ0(x − na) (31)

Here φζ0(x) is a Wannier–Stark ladder function with the spread(1ε/eE) where 1ε is
the bandwidth under consideration [19]. As a rule this spread is bigger than the lattice
constant, and the quasienergy state in the last equation is a superposition of not too sharply
localized states corresponding to equidistant Wannier–Stark levels. It is, therefore, to be
emphasized that whereas a Wannier–Stark eigenfunction is localized, and gives a single
energy eigenvalue, a quasienergy state is an extended state, and gives the whole ladder.
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